Научный семинар "Проблемы механики сплошной среды"
Аннотации докладов 2000 г.
В весенний период 2000 г. на семинаре были представлены работы:
22 марта 2000 г.
Никифоров А.И. О моделировании суффозии водоносного пласта.
Предложена новая математическая модель выноса твердых частиц водным потоком из пористого пласта. Пористая среда представляется в виде двух взаимопроникающих континуумов, один из которых связан с подвижными жидкостями и частицами, а другой - с неподвижными. Получены уравнения, описывающие изменения функции распределения пор и частиц по размерам. Эти уравнения включают в себя параметры, которые оценены с помощью модельного представления пористой среды в виде пучка параллельных капилляров. Получены соответствующие выражения для динамической пористости и проницаемости.
22 марта 2000 г.
Султанов Р.А. Некоторые проблемы численного моделирования нелинейной фильтрации. Рассматривается двухфазная фильтрация, одна из фаз является неньютоновской жидкостью. Известно, что при малых скоростях фильтрации неньютоновской жидкости может нарушаться закон Дарси, то есть линейная зависимость между скоростью фильтрации и градиентом давления. В этих условиях при численном моделировании возникает ряд проблем, присущих только нелинейной фильтрации. Рассматриваются некоторые подходы к их решению. Анализируются полученные результаты.
22 марта 2000 г.
Гайнетдинов Р.Р. Гидродинамические исследования вертикальных газовых скважин.
Как показали экспериментальные исследования, зависимость коэффициента проницаемости пласта от давления хорошо аппроксимируется монотонными и выпуклыми функциями. В данной работе предлагается численный алгоритм для оценки зависимости проницаемости от давления при нестационарной фильтрации газа в пористой среде. Для решения обратной задачи используются свойства монотонности и выпуклости искомой функции.
5 апреля 2000 г.
Габидуллина А.Н., Елесин А.В., Кадырова А.Ш., Мазуров П.А. К идентификации коэффициента фильтрации трехмерного анизотропного напорного пласта.
Приводятся промежуточные результаты по построению регуляризирующих алгоритмов идентификации коэффициента фильтрации трехмерного анизотропного напорного пласта при стационарной фильтрации.
19 апреля 2000 г.
Малахов В.Г. Алгоритм метода дополнительной вязкости для осесимметричной деформации оболочек вращения.
Предложен вариант метода дополнительной вязкости для решения задачи о больших осесимметричных прогибах и устойчивости упругих и упругопластических оболочек вращения. Получена каноническая система уравнений для неизвестных усилий, моментов и скоростей перемещений. Для решения системы применен итерационный метод в сочетании с методом ортогональной прогонки. Приводятся результаты расчетов.
19 апреля 2000 г.
Шихранов А.Н. Нелинейное неосесимметричное деформирование пологих оболочек вращения с несовершенствами формы при температурных воздействиях.
Исследуется влияние неосесимметричных начальных неправильностей формы гибких упругих пологих оболочек вращения, подверженных умеренному нагреву, на характер деформирования. Задача рассматривается в геометрически нелинейной постановке в рамках теории среднего изгиба. Расчеты выполнены для пологой сферичеcкой оболочки при линейном распределении температуры по толщине.
26 апреля 2000 г.
Маликов А.И. Матричные системы сравнения в анализе динамики и оценивании состояния нелинейных непрерывных и дискретных систем управления.
Рассматривается современное состояние метода матричных систем сравнения, предложенного в работах Е.Ф.Сабаева и развитого в последние годы в лаборатории устойчивости и управления ИММ КазНЦ РАН. Систематизируются и обсуждаются полученные результаты в сопоставлении с другими методами качественного анализа нелинейных систем. Устанавливается связь матричных систем сравнения с квадратичными функциями Ляпунова, а для линейных неавтономных систем - с эволюционными уравнениями метода эллипсоидов. Даются способы построения матричных систем сравнения для регулируемых систем с неопределенностями и структурными изменениями. Рассматриваются перспективы развития и применения метода матричных систем сравнения для качественного анализа и оценивания состояния нелинейных систем в свете использования возможностей современных прикладных программ MathCad и Matlab.
26 апреля 2000 г.
Закиров У.Н. Устойчивость орбит в рамках пятимерной теории Калуцы-Клейна. На основе концепции мира как плотности энергии (входящей в пятую координату), пространства и времени решаются пятимерные вакуумные уравнения Эйнштейна для метрик Вайдья и Керра (для случая зависимости гравитационного радиуса от пятой координаты). Получены уравнения девиации с эффективной составляющей, зависящей от пятой координаты. В итоге исследуется устойчивость орбит пробных частиц относительно тел с переменной плотностью энергии. В частности, ближайшая к центру устойчивая орбита С.Каплана оказывается зависимой от пятой координаты, в отличие от классического случая.
31 мая 2000 г.
Данилаев П.Г. Идентификация процессов переноса в неоднородных пористых средах. Казанский государственный технический университет им. А.Н.Туполева. По материалам диссертации на соискание ученой степени д.ф.-м.н. по специальности 05.13.16 - применение вычислительной техники, математического моделирования и математических методов в научных исследованиях. Рецензент д.т.н. Хайруллин М.Х.
Рассматриваются условно-корректные задачи подземной гидрогазодинамики и теплопроводности. Основное внимание уделено решению коэффициентных обратных задач для уравнений параболического типа в связи с их приложениями. За основу при построении алгоритмов их решения взяты результаты, полученные при доказательстве соответствующих теорем единственности.
31 мая 2000 г.
Вишнякова И.В. Моделирование процесса охлаждения оборотной воды и реконструкция промышленных градирен.
Казанский государственный технологический университет. По материалам диссертации на соискание учёной степени кандидата технических наук по специальности 05.17.08 - Процессы и аппараты химической технологии. Рецензент к.ф.-м.н. Федяев В.Л.
Рассматривается работа оросителей промышленных градирен. Предполагается замкнутое математическое описание процесса охлаждения воды в них. Приводятся результаты расчёта температурных полей, оценивается влияние типа и толщины слоя оросителя на тепловой КПД градирни. Теоретические данные дополняются экспериментальными. Представляются эмпирические зависимости для оценки коэффициентов обратного перемешивания, массоотдачи и удерживающей способности стенок оросителя. На основе приведённых исследований вырабатываются рекомендации по реконструкции рассматриваемых градирен.
7 июня 2000 г.
Гайнетдинов Р.Р. Газогидродинамические исследования вертикальных и горизонтальных скважин на основе теории некорректных задач.
По материалам диссертации на соискание ученой степени к.ф.-м.н. по специальности 01.02.05 - механика жидкости, газа и плазмы. Рецензент к.ф.-м.н. Шамсиев М.Н.
Одной из важнейших задач подземной газогидродинамики является создание и развитие методов определения коллекторских свойств нефтегазовых пластов, поскольку эффективность проектов разработки и анализ процесса эксплуатации месторождений находятся в прямой зависимости от степени изученности пласта. В данной работе рассматриваются задачи определения фильтрационных параметров пористых сред на основе теории некорректных задач. В качестве исходной информации используются результаты гидродинамических исследований вертикальных и горизонтальных газовых скважин.
Ученые, желающие представить свои результаты на семинаре,
будут с удовольствием приняты в Институте механики и машиностроения
КазНЦ РАН.
| Научный семинар |
2001
|